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Abstract: There are clinical needs for optical coherence tomography (OCT) of large areas
within a short period of time, such as imaging resected breast tissue for the evaluation of cancer.
We report on the use of denoising predictive coding (DN-PC), a novel compressed sensing (CS)
algorithm for reconstruction of OCT volumes of human normal breast and breast cancer tissue.
The DN-PC algorithm has been rewritten to allow for computational parallelization and efficient
memory transfer, resulting in a net reduction of computation time by a factor of 20. We compress
image volumes at decreasing A-line sampling rates to evaluate a relation between reconstruction
behavior and image features of breast tissue.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Breast cancer is the second most common cancer in women in the United States [1]. There has
been increased interest in using high-resolution imaging modalities for evaluating breast tissue
in real-time. OCT is being studied for use in breast cancer diagnostics and disease progression
tracking [2–9]. Histology remains the gold standard for tissue evaluation, but its processing
is both costly and time-consuming. OCT has been shown to be able to identify normal breast
parenchyma as well as pathologic conditions such as ductal carcinoma in situ (DCIS), invasive
ductal carcinoma (IDC), and microcalcifications [9–11]. Ultrahigh resolution OCT has shown
strong histological correlations [9] to aid manual diagnosis of pathological conditions of the
breast. In addition, functional extensions of OCT, such as optical coherence elastography [4,12]
and polarization-sensitive OCT [13,14], and alternatives, such as Raman spectroscopy [15–17],
have been investigated.

Optical coherence tomography (OCT) is capable of acquiring 3-D images at micron resolution
over a large field-of-view. Typical OCT image volumes can contain hundreds of millions of pixels.
Optimally, imaging modalities used in the clinical setting will have a large field of view and a
high spatial resolution. With these two criteria prescribed, the minimum scan acquisition time
is fixed by the amount of data that must be acquired. Normally, this amount of data is dictated
by the Nyquist-Shannon sampling theorem [18,19]. Given the fact that resected breast tissue is
typically larger than the standard OCT field of view (4 mm), there is a need to use a form of OCT
that can image large areas within a short period of time, thus requiring large image scales. Based
on the Nyquist-Shannon sampling theorem, a large number of non-redundant samples must be
obtained for all bandlimited signals – in the case of spectral domain OCT, the measurements are
taken in the Fourier domain. Under conventional reconstruction, the total number of samples
required in the Fourier domain is determined by the spectral range of the spectrometer and the
imaging depth required [20]. This in turn results in a high sampling rate for images requiring
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large imaging depth and high axial resolution. Overall, this poses a heavy burden for acquisition,
processing, and storage.

In this paper, we thus propose the use of compressed sensing to decrease the rate of OCT data
sampling, thus reducing the amount of data required while maintaining fidelity in high-resolution
image reconstruction. Recent developments in applied mathematics have demonstrated that
application of the theory of compressed sensing is a promising approach in reducing scan
acquisition times by sub-sampling below the Nyquist rate, provided that the target image is sparse
[21]. The compressed sensing technique can provide high spatial resolution while vastly reducing
the number of samples required for acquisition. Therefore, the total scan acquisition time, which
is a crucial aspect to consider in the clinical setting, can be minimized.

1.1. Compressed sensing

Compressed sensing (CS) is a technique that enables the reconstruction of images from highly-
undersampled data, provided that the signal is sparse in some representation basis [21]. This
allows acquisition of data at sub-Nyquist rates and reconstruction that results in images with
quality close to the ground truth or at the maximum possible resolution.

CS has already had notable successes when applied to several medical imaging modalities,
such as magnetic resonance imaging (MRI) [22–24], computed tomography (CT) [25], diffuse
optical tomography [26,27], and photoacoustic imaging [28–32]. Applications of CS in OCT
imaging have been reported by many groups [20,33–35] and high quality imaging has been
obtained with a significantly reduced amount of measurements compared to the Nyquist rate
requirement. Applying compressed sensing to OCT can enable faster acquisition while preserving
image quality. Considering that OCT images are volumetric 3-D scans, compressed sensing
offers the possibility of undersampling across one, two, or all three dimensions of acquisition.
Several groups [20,36] have performed simulations of compressed sensing along the A-line scan
axis (spectral sub-sampling) to reduce hardware complexity (lesser number of pixels). Duflot et
al. [37] have performed sub-sampling across the en face plane and recovered full images based
on sparsity in the Shearlet transform.

Based on the observation that denoised, difference images of adjacent OCT B-scans are
sparse in the Fourier basis, our group has proposed the Denoising Predictive Coding (DN-PC)
compressed sensing algorithm for recovering undersampled volumetric OCT data [38]. We
evaluated the effectiveness of DN-PC using simulations on synthetic subsamples taken from
full-resolution images, and compared the recovered results with a reference. DN-PC demonstrated
improved performance over other known compressed sensing algorithms on a variety of clinically
relevant datasets, and as expected, there has been a net reduction of data size upon compression.

1.2. Study goals

Though 3-D OCT has shown potential for real-time breast tissue evaluation and cancer diagnosis,
in standard Nyquist-based usage, it requires a long data acquisition time and a large amount
of spectral measurements, making it susceptible to motion artifacts and to clinical workflow
constraints that do not allow for lengthy operations. Furthermore, given the large size of breast
tissue samples (an average specimen size is 1.2 cm2, and typically has a range between 1.0
and 4.0 cm2), OCT procedures in clinical settings may often require undersampling to achieve
coverage of large fields of view.

The introduction of DN-PC has laid important groundwork for developing a CS-OCT solution
that could be generalized to reconstruct and analyze any tissue type [38]. However, as OCT
systems become more sophisticated and achieve higher resolutions, reconstruction methods may
face higher degrees of error as tissue features to reconstruct appear to be smaller and more
finely detailed. This study therefore aims to address the higher reconstruction error shown for
breast tissue data over other tissue types, to further understand the relation between CS-based
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reconstruction behavior and features of finely-detailed tissue, such as breast adipose. We aim to
apply DN-PC for compression of volumes at various sampling rates to evaluate this relation. In
doing so, we also work to improve the algorithm’s computational performance to demonstrate
that it has promise in its utility. The study analyzes the impact of compressed sensing-based
reconstruction on image texture feature preservation. In addition, we compare our reconstruction
to standard methods used to address image acquisition speed and downsampling.

2. Methods

2.1. Imaging protocol

Breast tissue specimens used consisted of discarded tissue that was not required for diagnosis as
defined by the Department of Pathology at the Columbia University Medical Center (CUMC).
Specimens were collected from 49 patients undergoing surgical procedures. They consisted of
normal tissue from breast reductions and tumor samples from mastectomies. The protocol was
considered as non-human subject research in accordance with 45CFR46 and was performed
under Columbia University Tissue Bank IRB AAAB2667. All tissue samples were de-identified.
Specimens were imaged ex vivo within 24 hours after excision. Imaging was performed with a
home-built ultrahigh resolution (UHR) spectral-domain OCT system, with an optical window
of 800 nm, an axial resolution of 2.7 µm, and a lateral resolution of 5.5 µm (in air). Volumes
were acquired at 32 kHz linerate, and images measured 800 by 1024 pixels, which physically
correspond to 3.0 mm by 1.78 mm, respectively [6].

2.2. Compressed sensing algorithm

The DN-PC algorithm used within this paper was adopted from a prior study published by our
group [38]. Briefly, the problem of recovering full samples, X, from sub-samples, contained
in A, can be written in the matrix form: A = DX, where D is the sub-sampling matrix mapping
from X to A. The linear equation on its own is under-determined, but if X is sparse in some basis,
compressed sensing can be applied to recover solutions with probability of arriving at the correct
solution correlated to the level of sparsity.

Let Ψ be the combination of a regularization term and the transform in which X is sparse, then
the compressed sensing method can be written as solving the optimization problem argmin(X)
for f (x) = | |A − DX | |2 + |Ψ(X)|1. Since the problem does not have a closed form solution, it
requires the use of iterative solvers. The choice of Ψ affects the convexity and differentiability
properties of the objective function and hence influences the possible choices of iterative solvers.
Ψ is a Gaussian blur (of a size to-be-determined) followed by a Fourier transform. For the

objective function, the absolute value after the Fourier transform is used to compute the ℓ1
norm. In summary, the DN-PC solver uses a combination of iterative shrinkage thresholding and
proximal gradients to both recover the image and also decide the optimal blur size to be used.
The solver converges to a solution if the sparsity holds, else it fails to converge should the sparsity
condition be insufficient. Within this paper, we explore the impact of the DN-PC algorithm
within OCT images of human breast tissue, which has heterogeneous tissue architecture.

2.3. Parallelization

Previous work has shown reconstruction times of over 10 hours [38] for a 100 B-scan volume (800
x 512 pixels per B-scan) using a CS reconstruction algorithm combining a TVL1 reconstruction
method by Yang et al. [39] and a predictive coding approach. This was further improved upon
with the DN-PC algorithm at 19 minutes for reconstruction of the same volume [38]. However,
to ensure feasibility of imaging within a clinical environment, the reconstruction times need to
be faster. The computationally intensive operations involved in DN-PC, namely 2-D convolution
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and 2-D Fourier transform, can be made faster using parallel processing, and the intermediate
norm computations can also be optimized.

The code was rewritten to enable parallel processing improvements by leveraging the MATLAB
Parallel Processing Toolbox and NVIDIA CUDA backend functions, which have GPU-optimized
expressions for computing 2-D Fourier and inverse Fourier transforms, Gaussian filtering,
Frobenius norm, element-wise addition, multiplication, division, and absolute magnitude
operations. The rewrite was necessary to enable batching, vectorization, memory coalescing, and
efficient memory transfers between the CPU and GPU and to optimize other complex operations
into GPU/SIMD-optimized, divergence-free conditional operations in native MATLAB array
syntax. All the processing is done inside the GPU, and only the final results are returned to the
CPU by using a gather operation.

The core algorithm after the rewrite remained mathematically equivalent to that of McLean
et al. [38], and all other hyperparameters, with the exception of patch size and maximum
permissible of iterations for convergence (I), were unmodified. To ensure that there was no
bottleneck in memory transfers, the patch size was required to be at least 256 x 256 pixels for the
system performing the computations. The new maximum number of iterations was increased to
100 for the first B-scan and remained fixed to the default 20 for subsequent scans.

The batching involves slicing the subsampled images and their corresponding subsampling
matrix into patch-sized blocks to be processed. In the original implementation of DN-PC, the
iterative solver has a conditional division, which divides by α at the predicted points, or by (1+α)
at subsampled points, where α is a rough measure of noise (see Equation 7 in [38]). In the newly
parallelized implementation, this expression is instead vectorized as a parallelized, element-wise
division. This is achieved by pre-computing a matrix of element-wise divisors that are mapped
from the subsampling matrix.

The entire batched data is pre-loaded into the GPU. The algorithm processes all patches
comprising a B-scan and then iterates to the next B-scan. Given that adjacent B-scans are
similar, it is efficient to store the previous B-scan’s reconstruction results (on the GPU) and
use these as initial values for the next iteration. In our implementation, 2-D FFT and Gaussian
filtering is written into a single line of code by composing their respective MATLAB functions
(imgaussfilt and fft2). MATLAB performs the operations separately: imgaussfilt
followed by fft2.

The parallel processing improvements are applicable to any systems with a modern X86 CPU,
with optional multi-threading, and CUDA-enabled GPUs.

2.4. Study parameters

A custom selection of 104 volumes, representative of three breast tissue subtypes (36 volumes of
adipose, 35 of stroma, 33 of cancer), was compiled for image reconstruction using the DN-PC
algorithm. Volumes of 100 B-scan OCT images for each breast tissue specimen were used for
reconstruction. The dataset was derived from the data collected previously by our group [6].
The following parameters were used: α = 0.1, β = 1, λmax = [3, 4], λmin= [0.2, 0.4], J = 20,
I = 20, convergence threshold τ = 10−3, with staggered sampling and periodic full-resolution
acquisitions every 10 consecutive frames (Ib = 10).

Compression was done at various A-line sampling rates (50%, 25%, 10%, 5%, 2.5%, 1%).
The compression and image reconstruction using DN-PC was done using a Windows 10 desktop
with an Intel Core i9-9900K CPU at 3.6 GHz, a NVIDIA GeForce RTX 2080 GPU, and 128 GB
of RAM. The algorithm was fully run on MATLAB 2021b.

2.5. Metrics

Several quantitative metrics were selected to assess and compare compressed sensing reconstruc-
tion performance. The first measure is Relative Error, which measures the intensity difference
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between the original and reconstructed images. It is defined as

Relative Error =
| |xrecon − x| |F

| |x| |F
(1)

where x is the original OCT volume and xrecon is the reconstructed volume. The norm utilized in
the Relative Error measure is the Frobenius norm instead of the standard ℓ2 norm.

The second measure is the Structural Similarity Index Measure (SSIM), which evaluates the
similarity between two images using luminance, contrast, and structure as quantitative elements
(Eq. (2)) [40]. The SSIM is a value between 0 and 1, where a value of 1 indicates that the
evaluated images are identical, and 0 indicates otherwise. Mathematically, SSIM is defined as
follows,

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ

2
y + C1)(σ

2
x + σ

2
y + C2)

(2)

where µx, µy,σx,σy, and σxy are the local means, standard deviations, and cross-covariance
for images x and y. C1 and C2 are the regularization constants for luminance and contrast,
respectively.

All cases involved a 3 × 3 pixel median filter for denoising, applied to both the ground truth
and the reconstructed volumes before measuring performance metrics such as relative error and
SSIM.

2.6. Texture features comparison between CS and classic reconstruction

Previous studies have shown that texture features are different between normal fibrous stroma,
cancer, and adipose tissue [6,41,42]. Therefore, we first evaluated if images reconstructed using
the DN-PC algorithm altered texture features. In addition, a standard method to reduce net
acquisition time is by undersampling the target image. Downsampled images can then be upscaled
in size to the desired resolution, and missing information in pixels is added by interpolation. To
compare the performance of image reconstruction between the compressed sensing algorithm
and this classic form of downsampling and interpolation, select images from each tissue type
(adipose, normal stroma, and cancer) were chosen. Original images from OCT volumes were
decimated to the same sampling rates as the ones performed with the DN-PC algorithm. The
downsampled images were then upsampled using an implementation of the interp2 built-in
function in MATLAB.

Quantitative texture features were extracted from CS-reconstructed images and classic down-
sampling and interpolated OCT images. In each OCT image, texture features were extracted from
a Grey Level Co-occurrence Matrix (GLCM) implemented using the graycomatrix built-in
function in MATLAB. Since its invention, GLCM has played a vital role in many texture-based
image analysis applications [43,44], and also serves well in the selection of features to be used as
inputs for machine-learning classification algorithms [42,45]. Selected features included Entropy,
Skewness, Dissimilarity, Maximum Probability, GLCM Mean, GLCM Variance, Contrast,
Energy, Correlation, and Homogeneity. Feature extraction was performed in hand-selected
regions of interest (ROI) from the B-scans with each ROI having a size of 160-by-160 pixels and
spanning a region containing the designated tissue type (see Figure 1).

Analysis was also performed to assess preservation of optical parameters. We calculated the
mean attenuation coefficient for a 40-by-40 pixel ROI automatically placed within tissue in one
B-scan sample per available cancer (n = 28) and stroma (n = 34) volumes.

Statistical differences between the groups were examined using a one-way analysis of variance
(ANOVA), followed by a Tukey multiple comparisons test. Statistical calculations were done
using GraphPad Prism 9.
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Fig. 1. Selection of regions of interest (ROIs, blue) for feature extraction and texture analysis
(scale bar = 250 µm).

3. Results and discussion

3.1. Compressed sensing of breast OCT volumes - overall performance

The DN-PC algorithm was applied with varying levels of undersampling (50%, 25%, 10%, 5%,
2.5%, and 1% of total samples). Image reconstructions were separated by tissue types shown in
breast tissue samples: normal adipose, normal stroma, and cancerous tissue. Across all levels
of compression, high-level features appear to be preserved in tissue, particularly over stroma
and cancer specimens, and in a majority of adipose tissue samples. Qualitatively (Figure 2),
images at 50% sampling appear nearly identical to the full-resolution B-scans. 25% and 10%
samples demonstrate a small introduction of noise, and fine features become blurred with minor
vertical streaking. At higher levels of compression, particularly in images of adipose, walls and
edges appear distorted. In some cases, there is a notable amount of morphological opening,
especially in globular sections of the adipose, and in empty spaces within normal stroma or cancer
tissue (see arrows in Figure 2). Due to the patch-based nature of the reconstruction algorithm,
square-shaped artifacts appear as compression becomes more stringent (beginning at 10%) at
varying intensities, spanning entire images and displaying separation of intensity levels between
adjacent patches. This effect is more prominently displayed in images of adipose, but present in
all cases (shown by arrows in Figure 2).

Quantitative metrics included relative error and structural similarity index, whose increasing
and decreasing trends, respectively, are reported in Figure 3 and on Table 1. Relative error for
reconstruction had a range of 14% to 34%. Significant differences are present among 50%, 25%,
and 10% sampling rates, but then changes become unsubstantial for more stringent sampling
conditions. There is an overall increasing trend in relative error as the degree of compression
increases. Simultaneously, there is a monotonically decreasing relation for structural similarity
as undersampling is more severe. Median SSIM values generally ranged from 37% to 75% in
degree of similarity between original and reconstructed image volumes. Like relative error, major
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Fig. 2. Breast tissue DN-PC based image reconstructions by tissue subtype (A = normal
adipose, B = normal stroma, C = cancer) at four A-line sampling rates (scale bar =
250 µm). Zoomed-in subregions are depicted (bottom left) for each frame; arrows indicate
morphological changes and patch-shaped artifacts that appear as compression is higher.
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differences in SSIM occurred down to 10% sampling rate, but became marginal or insignificant
for more stringent sampling conditions. The denoised results appear improved over raw data
results across all cases.
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Fig. 3. Relative error and structural similarity analysis. (Reported values are medians and
95% confidence intervals, with n = 30, 28, 34 numbers of measurements, respectively)

Figure 3 demonstrates how relative error and structural similarity index measure (SSIM)
decrease and increase respectively, as the percentage of samples increases towards the totality
(100%) of samples.

While there is no observable correlation for computation time in relation to sampling rate,
the implementation of parallel processing greatly reduced net computation time by over at least
twenty-fold, as shown in Table 1. Computation time decreased significantly compared to the
pre-parallelized implementation of DN-PC, from an average reconstruction time of 60 minutes
to under 2 minutes for the same 100 B-scan volume. This improvement in computation time
is achieved thanks to the parallel processing algorithm re-write. Batch size was also increased
significantly from the first implementation of DN-PC [38], from a 32-by-32 pixel patch size, to
256-by-256 pixels on the current implementation. DN-PC applied with a larger patch size and the
parallel processing method yielded better results, with the edge distortions and streaking artifacts
significantly reduced. In both cases of small and large patch sizes, there was no observable
correlation for computation time in relation to sampling rate.

3.2. Texture features comparison between CS and classic reconstruction

As shown in Fig. 1, two 160-by-160 pixel ROIs were selected by hand from two select B-scan
examples for each tissue type, so that texture features based on a grey-level co-occurrence
matrix could be extracted for quantitative comparison between compressed sensing-based image
reconstruction and traditional downsampling-and-interpolation-based reconstruction.

An important underpinning of using novel techniques, such as DN-PC, is that they must
perform equally or better than classical or existing state-of-the-art methods. Overall, at the
expense of algorithmic complexity, DN-PC is shown to be able to preserve grey-level texture
features when compared to classically downsampled and interpolated images.
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Table 1. Quantitative summary of computation time, relative error and
structural similarity of breast OCT image reconstructions using DN-PC for

normal adipose, normal stroma, and cancer at A-line sampling rates of 50%,
25%, 10%, 5%, 2.5%, and 1%. Values are reported before and after

parallelization of the algorithm. Reported quantities are median values.

Not Parallelized Parallelized

Tissue Computation Relative SSIM Computation Relative SSIM

Time (s) Error Time (s) Error

Adipose

50% 3040.5 0.1766 0.7162 95.1 0.1438 0.7439

25% 3983.5 0.2342 0.5873 85.2 0.2152 0.5778

10% 5075.3 0.2989 0.4715 97.3 0.2780 0.4525

5% 3630.5 0.3329 0.4399 90.6 0.3102 0.4158

2.5% 2195.6 0.3569 0.4301 92.0 0.3285 0.3984

1% 3660.6 0.3569 0.4301 97.7 0.3401 0.3845

Stroma

50% 2984.9 0.1256 0.6971 98.2 0.1195 0.7183

25% 4125.2 0.1754 0.5534 93.9 0.1649 0.5426

10% 5781.7 0.2203 0.4440 100.4 0.2015 0.4356

5% 5421.8 0.2377 0.4098 94.6 0.2207 0.4019

2.5% 2612.4 0.2499 0.3964 95.7 0.2329 0.3854

1% 2967.9 0.2499 0.3964 99.2 0.2403 0.3748

Cancer

50% 3392.7 0.1451 0.7128 96.7 0.1301 0.7478

25% 3568.2 0.1947 0.5935 91.5 0.1768 0.5967

10% 3977.8 0.2259 0.5046 97.9 0.2115 0.5001

5% 3751.5 0.2483 0.4781 92.7 0.2335 0.4655

2.5% 2389.9 0.2631 0.4671 93.1 0.2468 0.4481

1% 1992.4 0.2631 0.4671 98.0 0.2553 0.4348

Figures 4, 5, and 6 depict statistical differences between groups calculated from a one-way
ANOVA and Tukey multiple comparisons. The figures show that for more constrained levels
of classic interpolation, texture features lose information to compression and show statistically
significant (p < 0.05) differences. In contrast, the CS-OCT-based method manages to preserve
texture features relative to the original image, for nearly every GLCM-based feature investigated.
Across the three tissue types, GLCM mean, kurtosis, and skewness do not appear to vary
significantly for both the compressed sensing and the classic downsampling and interpolation
cases, whereas the largest changes are apparent in features such as contrast, correlation, and
dissimilarity, all of which are measures of difference or distinction of some sort.

Further analysis was performed to assess whether the compressed sensing approach conserves
optical parameters, the attenuation coefficient being of particular importance. No statistically
significant difference (p < 0.05) was found among most comparisons between the original and
the CS-OCT-based samples (50% to 1% for cancer and 50% to 5% for stroma). This is consistent
with the finding that texture features also appear to be preserved across CS-based reconstructions.
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Fig. 4. Statistical analysis of nine GLCM-based texture features for adipose tissue, from the
original image, the CS-based image reconstruction at varying degrees of compression, and
traditional, interpolated images at varying rates. Statistical significance reported by p-value
(* p < 0.05, ** p < 0.01, *** p < 0.001). Values are reported as means +/- S.D. over 4 ROI
selections.
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Fig. 5. Statistical analysis of nine GLCM-based texture features for cancerous breast
tissue, from the original image, the CS-based image reconstruction at varying degrees of
compression, and traditional, interpolated images at varying rates. Statistical significance
reported by p-value (* p < 0.05, ** p < 0.01, *** p < 0.001). Values are reported as means
+/- S.D. over 4 ROI selections.
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Fig. 6. Statistical analysis of nine GLCM-based texture features for normal stroma of breast
tissue, from the original image, the CS-based image reconstruction at varying degrees of
compression, and traditional, interpolated images at varying rates. Statistical significance
reported by p-value (* p < 0.05, ** p < 0.01, *** p < 0.001). Values are reported as means
+/- S.D. over 4 ROI selections.
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3.3. Limitations and future work

With regards to tissue type, it is apparent that CS-OCT reconstruction of breast adipose tissue
is more challenging than that of cancerous or normal stroma of breast tissue. This qualitative
difference may be attributed to the presence of porous structures that do not conform well to
the sparsity conditions required by compressed sensing. The results with DN-PC, while much
better than classical downsampling, have room for improvement, as the algorithm’s iterator
appeared to fail in converging and producing images closer to the original, full-resolution images.
Though resulting images appeared visually similar, we suspect this similarity is due to how tissue
structure remains similar across adjacent volume slices, so this overall structure is preserved
nonetheless. We also note that the apparent size of adipose globules may appear independent of
the convergence of the iterator, as size appears to change regardless of convergence.

The choice of full-slice sampling distance, which is defined by the parameter Ib and involves
periodically preserving a full-resolution scan to "reset" any remaining propagated error [38],
appeared to introduce height variations that appeared across slices, and hence the sparsity of the
difference image was affected. In our dataset, there is a sharp decline in reconstruction accuracy
when choosing to preserve a full-resolution scan every 20 or more slices. Hence, the full-slice
sampling distance was set to every 10 slices. Image registration by slice in OCT volumes prior
to image reconstruction can be a focus of future research and may allow even smaller effective
sub-sampling ratios.

We employed the structural similarity index metric to analyze the performance of the DN-PC
algorithm in reconstructing tissue structures. It is a refined metric that also accounts for perceptual
masking phenomena [46], and can show the effectiveness of the compressed sensing algorithm
over the other interpolation methods. However, when observing the metric across slices in single
volumes, we noticed that the DN-PC reconstructed images appeared qualitatively and visually
more similar to one another than the calculated SSIM implied. In other words, we observed that
the accumulation of error that propagated between periodically sampled full-resolution slices
accounted for a sharp decline in the SSIM. But qualitatively, image quality did not appear to
deteriorate as sharply as the decline in SSIM seemed to indicate. It may be appropriate for future
research to consider other quantitative metrics to discern the performance of image reconstruction
on different levels, such as a per-slice level and a per-volume level.

Although classification performance was not assessed in this study due to small sample size,
future research could involve the combination of hardware-based CS-OCT implementation and
diagnostic-focused classification.

4. Conclusion

Compressed sensing provides overall improvements in image reconstruction, opening up the
possibility of revision in current optical hardware, and higher efficiency in OCT-based image
acquisition for clinical workflow. Our work proves a remarkable improvement in image
reconstruction speed given undersampled data while preserving image quality and features to a
great extent. CS-OCT has the potential to significantly alter the presently established clinical
workflow for breast cancer assessment, by introducing OCT as a means of rapid intraoperative
assessment in place of frozen section analysis and pathology studies. Coupled with automated
image analysis, implementation of compressed sensing could also reduce the need for re-excision
of tumors by allowing rapid assessment of cancer margins, thus improving diagnostic speed
relative to standard histological procedure and boosting diagnostic accuracy.
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